Posts

FRINX UniConfig is now powered by PANTHEON.tech’s lighty.io

What is lighty.io?

lighty.io is an SDK that provides components for the development of SDN controllers and applications based on well-established standards in the networking industry. It takes advantage of PANTHEON.tech’s extensive experience from the involvement in the OpenDaylight platform and simplifies and speeds up the development, integration, and delivery of SDN solutions.

lighty.io also enables SDN programmers to use ODL services in a plain JavaSE environment. lighty.io enables a major OpenDaylight distribution vendor to build and deploy their applications faster.

FRINX UniConfig

FRINX UniConfig provides a common network API across physical and virtual devices from different vendors. It leverages an open source device library, which offers connectivity to a multitude of networking devices and VNFs.

The API provides the ability to store intent and operational data from services and devices, enables to commit intent to the network, syncs from the network so that the latest device state is reflected in the controller, compares intended state and operational state and provides device and network wide transactions. All changes are applied in a way that only those parts of the configuration that have changed are updated on the devices.

The UniConfig framework consists of distinct layers, where each layer provides a higher level of abstraction. APIs of the lowest layer provides the ability to send and receive unstructured data to and from devices. The unified layer provides translation capabilities to and from OpenConfig. The UniConfig layer provides access to the intent and the actual state of each device plus the capability to perform transactions and rollback of configurations.

NETCONF devices can be configured via their native YANG models or via OpenConfig. Finally, FRINX UniConfig also provides service modules based on IETF YANG models for the configuration of L2VPNs, L3VPNs and enables the collection of LLDP topology information in heterogeneous networks.

The UniConfig Framework is based on open source projects like OpenDaylight and Honeycomb. It publishes all translation units under the Apache v2 license. Customers and integration partners can freely contribute, modify and create additional device models, which work with the UniConfig Framework.

How did PANTHEON’s lighty.io help?

PANTHEON.tech’s lighty.io helped to make UniConfig run and build faster.

Porting UniConfig to lighty.io required no changes to the application code and has brought many measurable improvements. UniConfig now starts faster, has a smaller memory footprint, and most importantly – significantly reduces build time.

lighty.io packs many features, some of which are:

  • Client libraries for communication with ODL back end for Java, Python, and Golang
  • Enhanced NETCONF device simulator
  • Microservice friendly structure
  • Easy to use utilities for YANG model data serialization and deserialization
  • Example applications for integration with vertx.iospring.io and others which enable your productivity
  • Inclusive of maintained examples and guides so the newcomers can start working immediately and be efficient

About FRINX  

FRINX offers solutions and services for open source network control and automation. The team is made up of passionate developers and industry professionals who want to change the way networking software is created, deployed and operated. FRINX offers network automation products and distributions of OpenDaylight and FD.io in conjunction with support services. They are proud to count service providers and enterprise companies from the Fortune Global 500 list among its customers.

About PANTHEON.tech 

PANTHEON.tech is a software research & development company focused on network technologies and prototype software. Yet, we do not perceive networks as endless cables behind switches and routers. For us, it is all software-defined. Clean and neat. Able to dynamically expand and adapt according to the customer’s needs.

We thrive in a world of network functions virtualization and arising need for orchestration. Focusing on SDN, NFV, Automotive and Smart Cities. Experts in OpenDaylight, FD.IO VPP, PNDA, Sysrepo, Honeycomb, Ligato and much more.

 

lighty.io runs 5G on xRAN

In April 2018, the xRAN forum released the Open Fronthaul Interface Specification. The first specification made publicly available from xRAN since its launch in October 2016. The released specification has allowed a wide range of vendors to develop innovative, best-of-breed remote radio unit/head (RRU/RRH) for a wide range of deployment scenarios, which can be easily integrated with virtualized infrastructure & management systems using standardized data models.

This is where PANTHEON.tech came to the scene. We became one of the first companies to introduce full stack 5G compliant solution with this specification.

Just a few days spent coding and utilizing the readily available lighty.io components, we created a Radio Unit (RU) simulator and an SDN controller to manage a group of Radio Units.

Now, let us inspect the architecture and elaborate on some important details.

We have used lighty.io, specifically the generic NETCONF simulator, to set up an xRAN Radio Unit (RU) simulator. xRAN specifies YANG models for 5G Radio Units. lighty.io NETCONF device library is used as a base which made it easy to add custom behavior and 5G RU is ready to stream data to a 5G controller.

The code in the controller pushes the data collected from RUs into Elasticsearch for further analysis. RU device emits the notifications of simulated Antenna Line Devices connected to RU containing:

  • Measured Rx and Tx input power in mW
  • Tx Bias Current in mA (Internally measured)
  • Transceiver supply voltage in mV (Internally measured)
  • Optional laser temperature in degrees Celsius. (Internally measured)

*We used device xRAN-performance-management model for this purpose.

lighty.io as a 5G controller

With lighty.io we created an OpenDaylight based SDN controller that can connect to RU simulators using NETCONF. Once RU device is connected, telemetry data is pushed via NETCONF notifications to the controller, and then directly into Elasticsearch.
Usually, log stash is required to upload data into Elasticsearch. In this case, it is the 5G controller that is pushing device data directly to Elasticsearch using time series indexing.
On Radio Unit device connect event, monitoring process automatically starts. RPC-ald-communication is called on RU device collecting statistics for:

  • The Number of frames with incorrect CRC (FCS) received from ALD – running counter
  • The Number of frames without stop flag received from ALD – running counter
  • The number of octets received from HDLC bus – running counter

*We used xran-ald.yang model for this purpose.
The lighty.io 5G controller is also listening to notifications from the RU device mentioned above.

Elasticsearch and Kibana

Data collected by the lighty.io 5G controller via RPC calls and notifications are pushed directly into Elasticsearch indices. Once indexed, Elasticsearch provides a wide variety of queries upon stored data.
Typically, we can display several faulty frames received from “Antenna Line Devices” over time, or analyze operational parameters of Radio Unit devices like receiving and transmitting input power.
Such data are precious for Radio Unit setup, so the control plane feedback loop is possible.

By adding Elasticsearch into the loop, data analytics or the feedback loop became ready to perform complex tasks. Such as: Faulty frame statistics from the “Antenna Line Devices” or the  Radio Unit operational setup

How do we see the future of xRAN with lighty.io?

The benefit of this solution is a full stack xRAN test. YANG models and its specifications are obviously not enough considering the size of the project. With lighty.io 5G xRAN, we invite the Radio Unit device vendors and 5G network providers to cooperate and build upon this solution. Having the Radio Unit simulators available and ready allows for quick development cycle without being blocked by the RU vendor’s bugs.

lighty.io has been used as a 5G rapid application development platform which enables quick xRAN Radio Unit monitoring system setup.
We can easily obtain xRAN Radio Unit certification against ‘lighty.io 5G controller’ and provide RU simulations for the management plane.

Visit lighty.io page, and check out our GitHub for more details.

PANTHEON.tech releases lighty.io version 9.0

OpenDaylight Fluorine 9 LogoPANTHEON.tech is proud to announce the release of lighty.io 9.0 following the official  OpenDaylight Fluorine release.

lighty.io has been adapted to reflect the latest upstream changes and made fully compatible with.

Check out our latest lighty.io release on our GitHub account.

Here are some noteworthy improvements what OpenDaylight Fluorine established:

  •  Yangtools cleanup and refactoring.
  •  Streamlined generated Yang module APIs.
  •  Improved Java bindings.
  •  NETCONF and RESTCONF improvements.

The biggest ODL improvement is the new set of core services provided by the MD-SAL project. Older services provided previously by the controller project have been marked as dprecated and will be removed in future ODL/lighty.io releases.

lighty.io provides new MD-SAL services as well as deprecated controller implementations.

Please see lighty.io Services for reference.

If your application uses any of the deprecated marked services, you should consider refactoring. Contact us for any troubleshooting requirements.

In addition to the latest ODL improvements, lighty.io has more to offer:

  • Up-to-date web server Jetty 9.4.11.v20180605 with better HTTP2 support.
  • RESTCONF implementations are now in compliance with HTTP2.
  • YANG actions implementation as it was defined in RFC 7650.
  • gNMI / OpenConfig south-bound plugin.
  • Minor changes leading the controller to startup faster
  • Improved Javadoc for main APIs.
  • The easier pathway towards JDK 11 adoption.
  • Spring.io dependency injection integration.
  • And many more, please check them out on the lighty.io web.

List of new and deprecated services:

List of new MD-SAL services:  List of deprecated services:
org.opendaylight.mdsal.binding.api.DataBroker

org.opendaylight.mdsal.binding.api.MountPointService

org.opendaylight.mdsal.binding.api.NotificationPublishService

org.opendaylight.mdsal.binding.api.NotificationService

org.opendaylight.mdsal.binding.api.RpcProviderService

org.opendaylight.mdsal.binding.dom.codec.api.BindingCodecTreeFactory

org.opendaylight.mdsal.binding.dom.codec.api.BindingNormalizedNodeSerializer

org.opendaylight.mdsal.dom.api.DOMDataBroker

org.opendaylight.mdsal.dom.api.DOMDataTreeService

org.opendaylight.mdsal.dom.api.DOMDataTreeShardingService

org.opendaylight.mdsal.dom.api.DOMMountPointService

org.opendaylight.mdsal.dom.api.DOMNotificationPublishService

org.opendaylight.mdsal.dom.api.DOMNotificationService

org.opendaylight.mdsal.dom.api.DOMRpcProviderService

org.opendaylight.mdsal.dom.api.DOMRpcService

org.opendaylight.mdsal.dom.api.DOMSchemaService

org.opendaylight.mdsal.dom.api.DOMYangTextSourceProvider

org.opendaylight.mdsal.dom.spi.DOMNotificationSubscriptionListenerRegistry

org.opendaylight.controller.sal.binding.api.NotificationProviderService

org.opendaylight.controller.sal.binding.api.RpcProviderRegistry

org.opendaylight.controller.md.sal.dom.spi.DOMNotificationSubscriptionListenerRegistry

org.opendaylight.controller.md.sal.dom.api.DOMMountPointService

org.opendaylight.controller.md.sal.dom.api.DOMNotificationPublishService

org.opendaylight.controller.md.sal.dom.api.DOMNotificationService

org.opendaylight.controller.md.sal.dom.api.DOMDataBroker

org.opendaylight.controller.md.sal.dom.api.DOMRpcService

org.opendaylight.controller.md.sal.dom.api.DOMRpcProviderService

org.opendaylight.controller.md.sal.binding.api.MountPointService

org.opendaylight.controller.md.sal.binding.api.NotificationService

org.opendaylight.controller.md.sal.binding.api.DataBroker

org.opendaylight.controller.md.sal.binding.api.NotificationPublishService

 lighty.io by PANTHEON.tech